@ Whether or not a system is BIBO stable depends on the ROC of its
system function.

@ Theorem. ALTIsystem is B/BO stableif and only if the ROC of its
system function includes the (entire) un/t circle(ie., |4 = .(1

@ Theorem. A causal IT1 system with a rat/onal system function H'is BIBO
stable if and only if all of the poles of H lie inside the unit circle (i.e., each of
the poles has a /magnitude less than one(



@ AlLTIsystem A with system function A is invertible if and only if there
exists another LTI system with system function H,, such that

H(QHnv(9 = <1

in which case Hy is the system function of A/~ and

1
Al = iz

@ Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is 10l necessarily unique

@ In practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only

interested in one specific choiceof inverse system (due to these
additional constraints of stability and/or causality.(
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of LTI Sysiygi§ m-Function and Difference-Equation

Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients

Consider a system with input Xand output Jthat is characterized by an
equation of the form

N M
Zbky(n—k) = Z axn—kK  where M=<N.
k=0 =0

Let A2denote the impulse response of the system, and let X, Y, and H
denote the z transforms of X J; and /£ respectively.

One can show that H(2 is given by

XA _ Y i o A

X(Z( Z;(V:o kak.

Observe that, for a system of the form considered above, the system
function is always rational.

H(Z (
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Section 11.6

Application: Analysis of Control Systems
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Reference
Input Error Output
> @ > Controller > Plant > >
A A
- Sensor -
Feedback
Signal
@ Input: desired valueof the quantity to be controlled
@ output: actual valueof the quantity to be controlled
@ crror: adifferericebetween the desired and actual values
@ plant: system to be controlled
@ sensor: device used to measure the actual output
@ controller: device that monitors the error and changes the input of the

plant with the goal of forcing the error to zero



@ Often, we want to ensure thata system is BIBO stable.

@ The BIBO stability property is more easily characterized in the z domain
than in the time domain.

@ Therefore, the z domain is extremely useful for the stability analysis of
systems.
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Section 11.7

Unilateral Z Transform
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@ The of the sequence X denoted UZ{ X or X, is
defined as

X(2 = Z xXnz".
=0
@ The unilateral z transform is related to the bilateral z transform as follows:
UZR()= Y Xnz"= § ANUnz"= Z{xk (2.
=0 ===

@ In other words, the unilateral z transform of the sequence xis simply the
bilateral z transform of the sequence xu.

@ Since UA X = A xih and xuis always a 7/ght-sided sequence, the
ROC associated with UZ{ X%} is always the exterior of a circle

@ For this reason, we often qo not explicitly indicate the ROC when
working with the unilateral z transform.
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@ With the unilateral z transform, the same inverse transform equation is
used as in the bilateral case.

@ The unilateral z transform is on/y invertible for causal sequerces. In
particular, we have

UZHUZR}(n) = UZH{ A xd} (A
=ZH{ A xit} (A
=X UA

Xn) ifn=0

0 otherwise.

@ For a noncausal sequence X, we can only recover (/) for 1= 0.
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@ Due to the close relationship between the unilateral and bilateral z
transforms, these two transforms have some similarities in their properties.

@ Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.
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Property Time Domain Z Domain
Linearity aixi(n+ ax(n aXi(9+ aXx(d
Time Delay x(n-1) Z1X(D+ X—1)
Time Advance x(n+ 1) zX(2 —2(0)
Z-Domain Scaling  a’x(n) Xat2

&07x(1) X(e /2
Upsampling (1 M)Xn) X(2M)
Conjugation X5(n) XH 29
Convolution X1 *x(n), x1 and X are causal )(1(?)(2(2)
Z-Domain Diff. nx( 1)
Differencing X() —xn—-1) —1)2‘1))((2) —x(—1
Accumulation > %o XK —=r X(4

Property

Initial Value Theorem ~ X0) = lim X(A
20—
Final \alue Theorem nlim x(n = Iiml(z—l))((z(
— o0 Z_>
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Pair X)), n>0 X(2
1 (A 1
2 1 =T
3 (z—i)2
4 a y=1
5 an a2
A z—osQ(o
6 cosQon Z-2(cosQo) z+ 1
7 sinQon 222(—2(?%]&%{ 1
n Z—|a8|Cos 2o
8 lal"cosQon 2-2|al(cosQo) z+ |al 2
9 |a"sinQqn A9 9n 0o

2-2|al(cosQo) z |al 2
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@ Many systems of interest in engineering applications can be characterized by
constant-coefficient linear difference equations.

@ One common use of the unilateral z transform is in solving constant-
coefficient linear difference equations with nonzero initial conditions.
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Part 12

Complex Analysis
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@ A is a number of the form z= x+ /jywhere Xewd Yare
real numbers and /is the constant defined by /4= —1 (i.e., j= = —1).
@ The of the complex number zexpresses Zin the form
Z= X+ Jy

where xand yare real numbers. The quantities xand yare called the

and of Z and are denoted as Rezand Imz
respectively.

@ The of the complex number zZexpresses Zin the form
z= r(cosB+ /jSnB( orequivalently z= re®,

where r and O are real numbers and r > 0. The quantities 7 and © are
called the and of Z and are denoted as |4 and
arg Z respectively. [Note: &° = cosB+ /sinB.]
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